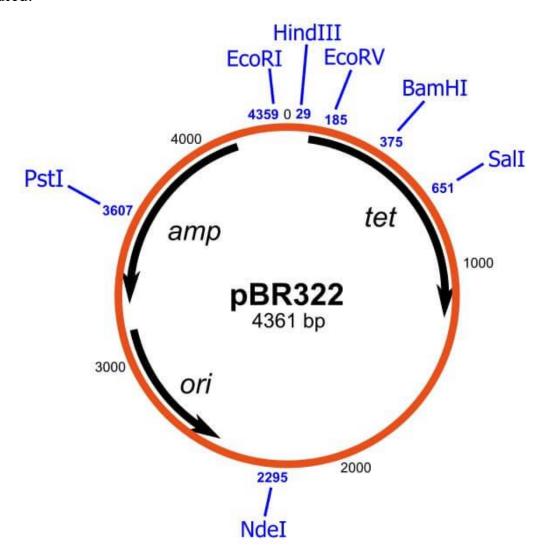
pBR322

pBR322 is a commonly used cloning vector in *E. coli* and has tremendous applications in cloning.


pBR322 full form

p = plasmid

BR = Bolivar, and Rodriguez

322 = numerical designation

- It was constructed in 1977 in the lab of Herbert Boyer at The University of California in San Francisco.
- It is a synthetic plasmid and was the first artificial plasmid to be constructed and used as a <u>cloning vector</u>.
- pBR322 is one of the most studied plasmids.
- It is 4362 base pairs long.
- It is completely sequenced, which means the whole sequence of pBR322 is known and studied.

pBR322 Vector.

Restriction enzyme sites

- Around 40 different restriction sites are present on the genome of pBR322.
- Almost 11 different restriction sites are present in the region of tetracycline resistance region.
- In the ampicillin resistance region 9 restriction sites of different enzymes are present.
- Some of the known restriction enzyme sites are BamHI, HindIII, EcoRI, SaII, and many more.

Selectable marker sites

Two selectable marker sites or antibiotic resistance genes are present on the genome of this plasmid.

- Ampicillin resistance site the ampicillin gene codes for β -lactamase, which can be used for screening microorganisms when a foreign DNA is being inserted in the plasmid.
- Tetracycline resistance site this gene degrades the antibiotic tetracycline and can be used for screening microorganisms.
- These antibiotic resistance genes are useful in screening organisms after cloning.

Advantages of pBR322

- Due to its manageable size, plasmid pBR322 is widely used as a cloning vector.
- The presence of two antibiotic resistance genes eases the selection process of recombinants.
- Multiple restriction enzyme sites make the plasmid compatible in many ways.
- It has a high copy number which is highly favorable in genetic engineering.