Western Blotting: Protein Detection Technique

Western blotting is a laboratory technique used to detect specific proteins in a sample. Unlike Southern blotting (for DNA) and Northern blotting (for RNA), Western blotting is used for proteins and involves antibody-based hybridization instead of nucleic acid hybridization.

Steps of Western Blotting

1. Sample Preparation

- Extract **proteins** from cells or tissues.
- Use **detergents** (like SDS) to break open the cells and release proteins.

2. SDS-PAGE (Protein Separation by Electrophoresis)

- Proteins are mixed with **SDS** (sodium dodecyl sulfate), which unfolds them and gives them a uniform negative charge.
- The sample is loaded onto a **polyacrylamide gel** and run using an **electric field**.
- Proteins separate based on **size** (smaller proteins move faster).

3. Transfer to a Membrane (Blotting)

- The separated proteins are transferred onto a **nitrocellulose or PVDF membrane** using **electroblotting**.
- This makes the proteins more accessible for detection.

4. Blocking

• The membrane is treated with a **blocking solution** (like milk or BSA) to prevent **non-specific binding** of antibodies.

5. Antibody Hybridization

- Primary antibody: Specifically binds to the target protein.
- **Secondary antibody**: Recognizes the primary antibody and is linked to an **enzyme** (like HRP or alkaline phosphatase) for detection.

6. Detection

- A chemical **substrate** reacts with the enzyme on the secondary antibody to produce **a visible signal** (chemiluminescence, fluorescence, or colorimetric reaction).
- The signal is detected using X-ray film or specialized imaging systems.

Applications of Western Blotting

- **✓** Medical Diagnostics Used to detect HIV, Lyme disease, and prion diseases.
- **✓** Protein Research Studies protein expression and modifications.
- ✓ Cancer Research Identifies biomarkers in tumors.