#### **General and Molecular Genetics**

# **Proofreading in Prokaryotes**

By: Shozab Seemab Khan (PhD Scholar)

# **Proofreading in DNA Replication**

- Proofreading is a mechanism that ensures the fidelity of DNA replication by minimizing errors, such as incorrect base pairing.
- During replication, DNA polymerases synthesize a new DNA strand complementary to the template strand.
- However, mistakes can occur when an incorrect nucleotide is incorporated. Proofreading helps correct these mistakes, thereby maintaining genetic stability.

# **Proofreading in DNA Replication**

# **\*Fidelity:**

\*Ensures accurate copying of the genetic information.

#### **\*Error Reduction:**

❖Decreases the error rate from about 1 in 10,000 nucleotides to 1 in 10 million or even 1 in a billion nucleotides.

## **&**Genomic Stability:

Prevents mutations, which could lead to cellular dysfunction or diseases like cancer.

## **Key Steps in Proofreading**

- **Synthesis:** DNA polymerase adds nucleotides to the growing strand.
- \*Recognition of Errors: When a mismatch occurs, the polymerase detects the incorrect base pair due to distortions in the DNA helix.
- **❖Exonuclease Activity:** The enzyme's 3'→5' exonuclease activity removes the incorrect nucleotide.
- **❖Resynthesis:** The polymerase resumes DNA synthesis, incorporating the correct nucleotide.



Polymerase adds an incorrect nucleotide to the new strand of DNA.

Polymerase detects that bases are mispaired.

Polymerase uses 3 '→ 5' exonuclease activity to remove incorrect nucleotide.

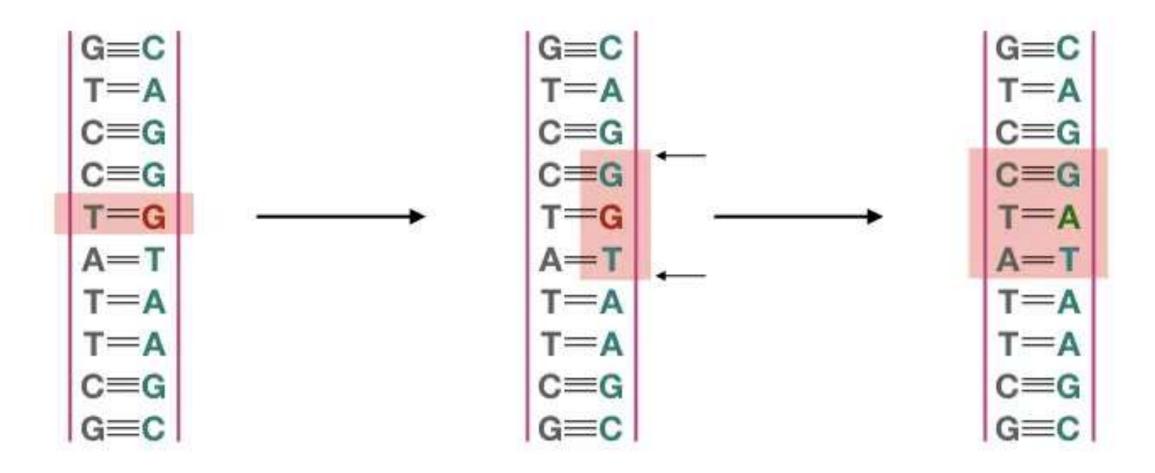
- \*1. DNA Polymerase III
- Main Replicative Polymerase: Synthesizes the leading and lagging strands.
- **Proofreading Function:** Possesses 3'→5' exonuclease activity to remove incorrectly paired nucleotides.
- \*2. DNA Polymerase I
- **Role in Lagging Strand Processing:** Removes RNA primers (using its  $5'\rightarrow 3'$  exonuclease activity).
- Replaces them with DNA nucleotides.
- **Proofreading:** Also has 3'→5' exonuclease activity for error correction during gap filling.

- 3: DNA Polymerase II
- \*Role in DNA Repair and Maintenance: Functions in DNA repair processes by filling in small gaps and repairing mismatched or damaged nucleotides, especially during the SOS response to DNA damage.
- **Proofreading Function:** Possesses 3'→5' exonuclease activity to remove incorrectly paired nucleotides, ensuring high fidelity during repair and gap-filling.

#### **\*4.** Helicase

- **❖Unwinding DNA:** Separates the two DNA strands at the replication fork to provide single-stranded templates for synthesis.
- Indirect Role in Fidelity: Ensures a proper template is available for accurate replication.

- 5. Single-Strand Binding Proteins (SSBs)
- Stabilization: Bind to single-stranded DNA to prevent reannealing and protect it from nuclease degradation.
- Indirect Role in Fidelity: Maintains strand separation to facilitate accurate base pairing.
- \*6. Primase
- **❖ Synthesis of RNA Primers:** Provides a starting point for DNA synthesis in lagging strand by adding RNA bases.
- **❖No Proofreading Role:** Errors in primers are corrected later by DNA polymerase I.


#### **❖ 7. DNA Ligase**

- Joining Okazaki Fragments: Seals nicks in the sugar-phosphate backbone after RNA primers are replaced with DNA.
- **❖ No Proofreading Function:** Its role is structural rather than error-corrective.
- \*8. Topoisomerase
- \*Relieves Supercoiling: Prevents tangling and supercoiling ahead of the replication fork.
- \*No Proofreading Role: Ensures smooth progression of the replication machinery.

## **Mechanism Ensuring Accuracy**

- Complementary Base Pairing: The polymerase initially relies on the base-pairing rules (A-T, G-C).
- Proofreading by DNA Polymerase: Checks and corrects errors during synthesis.
- Mismatch Repair System: Post-replication mechanism to fix any errors missed during proofreading.
- In prokaryotes, the interplay of these enzymes ensures highly accurate DNA replication, vital for maintaining the integrity of the genome across generations.

#### Proofreading after DNA replication



Mismatch occur During replication Removing the portion By exonuclease Repairing the nucleotide Replacing with the correct one hank Of Cour