1. The Study of Animal Behavior (Ethology)

Ethology is the scientific study of animal behavior, particularly under natural conditions. It seeks to understand what animals do, why they do it, and how behavior evolved.

Key Questions (Niko Tinbergen's Four Questions):

- 1. Causation (Mechanism): What are the stimuli that elicit the behavior? What neural, hormonal, and physiological mechanisms underlie it?
- 2. **Development (Ontogeny):** How does the behavior develop over an animal's lifetime?
- 3. Evolution (Phylogeny): How did the behavior evolve across species?
- 4. **Function (Adaptation):** How does the behavior enhance survival or reproduction?

Fields of study:

- Behavioral ecology
- Neuroethology (behavior & brain)
- Sociobiology (social behavior and evolution)
- Comparative psychology (cross-species behavior)

2. Mechanism of Behavior

The **mechanism of behavior** refers to the **physiological and molecular processes** that produce and control behavior. This includes:

- Sensory Input: Detection of stimuli (e.g., light, sound, chemicals)
- Processing: Integration by the brain or ganglia
- Motor Output: Muscular or glandular activity leading to action

Factors:

- Neural mechanisms: Neurons transmit signals to coordinate behavior.
- Hormonal mechanisms: Hormones regulate long-term and short-term behavioral responses.
- **Genetic mechanisms:** Genes control the development and function of neural and endocrine systems.
- Environmental stimuli: External cues trigger behavioral responses.

Example:

 A frog sees an insect (visual input) → neural processing → tongue strikes out (motor output)

3. The Nervous System and Behavior

The nervous system is central to perceiving the environment, processing information, and coordinating responses.

Structure:

- Central nervous system (CNS): Brain and spinal cord (or ganglia in invertebrates)
- Peripheral nervous system (PNS): Sensory and motor neurons

Key roles in behavior:

- Reflexes: Automatic responses (e.g., withdrawal from pain)
- Innate behaviors: Genetically hardwired (e.g., fixed action patterns in birds)
- Voluntary movements: Controlled behaviors like locomotion, hunting, or mating rituals
- Complex cognition: Memory, learning, decision-making (especially in mammals, birds, cephalopods)

Example:

• Birdsong production involves specific brain nuclei (e.g., HVC, RA in songbirds)

4. Hormones and Behavior

Hormones are chemical messengers produced by endocrine glands. They influence behavior by modulating brain activity and physiology.

Roles:

- **Developmental effects:** Permanent changes (e.g., testosterone shapes male behavior during development)
- Activational effects: Temporary changes (e.g., oxytocin during mating or bonding)
- **Pheromonal communication:** Hormonal cues passed between individuals (e.g., sex pheromones in insects)

Examples:

- Testosterone: Increases aggression and mating behavior in males
- Estrogen/Progesterone: Regulate reproductive cycles and maternal behavior
- Oxytocin: Promotes bonding in mammals
- Corticosterone: Released during stress; affects escape and vigilance behavior

5. Learning Behavior

Learning is a relatively permanent change in behavior based on experience.

Types of Learning:

- 1. Habituation: Decrease in response to repeated, harmless stimuli
 - Example: A snail stops retracting into its shell after repeated touching
- 2. Sensitization: Increased response to a strong or novel stimulus
- 3. Classical Conditioning (Pavlovian): Associating a neutral stimulus with a meaningful one
 - Example: Dogs salivate to the sound of a bell after it is repeatedly paired with food
- 4. **Operant Conditioning (Trial and Error):** Learning through consequences (rewards/punishment)
 - o Example: Rats learn to press a lever for food
- 5. **Imprinting:** Rapid learning during a critical period (often irreversible)
 - o Example: Ducklings following the first moving object seen
- 6. Social Learning (Observational): Learning by watching others
 - Example: Chimpanzees using tools by imitating adults
- 7. Insight and Problem Solving: Sudden understanding of a new situation
 - Example: Crows bending wires to retrieve food

6. Finding Food and Shelter (Foraging and Habitat Selection)

Animals exhibit **adaptive behaviors** to find food and shelter, which are crucial for survival.

Foraging Behavior:

- Optimal Foraging Theory: Animals maximize energy gain while minimizing effort and risk.
- Tactics:
 - o Sit-and-wait (ambush predators)
 - Active search (e.g., wolves hunting in packs)
- Tool use: Seen in primates, birds, sea otters

Shelter and Nesting Behavior:

- Shelter protects from predators and climate.
- Species-specific: burrows (rabbits), nests (birds), dens (carnivores)
- Some animals construct elaborate shelters (e.g., beavers build dams)

7. Migration

Migration is a long-distance, seasonal movement of animals between habitats for breeding, feeding, or climate avoidance.

Characteristics:

- Periodic and predictable
- Can be triggered by:
 - o Photoperiod (day length)
 - o Temperature
 - Hormonal changes

Examples:

- Birds migrate from temperate to tropical zones for winter
- Salmon migrate upstream to spawn
- Wildebeests migrate in search of water and grazing lands

Benefits:

- Access to resources
- Escape from predators or harsh environments

8. Orientation and Navigation

Animals use various mechanisms to **orient themselves** and **navigate** over short and long distances.

Orientation:

- Taxis: Directed movement toward or away from a stimulus (e.g., phototaxis in moths)
- **Kinesis:** Random movement affected by stimulus intensity (e.g., humidity affecting woodlice movement)

Navigation Strategies:

- Landmarks: Visual cues in the environment
- Sun compass: Position of the sun (requires internal clock)
- Star compass: Used by nocturnal migrants
- Geomagnetic cues: Earth's magnetic field (e.g., in turtles, pigeons)
- Olfactory cues: Smells used by salmon to return to natal rivers

Complex Navigation:

- Honeybees use the "waggle dance" to communicate the location of food.
- Sea turtles use **magnetoreception** for open-ocean navigation.