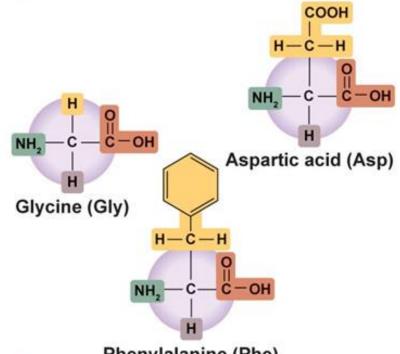


Proteins and Amino Acids


By: Shozab Seemab Khan (PhD Scholar)

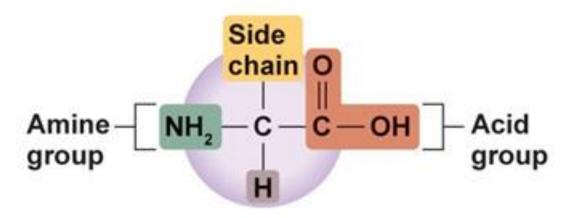
Amino acid structure

- leach strand of DNA holds the code to create specific proteins. Because the DNA can't leave the nucleus of the cell, a copy of the code, called messenger RNA (mRNA), is made. This is called transcription.
- The mRNA takes this information outside the nucleus and brings it to the ribosome.
- The ribosome moves along the mRNA, reading the code. This is the phase called translation.
- Another type of RNA called transfer RNA (tRNA) collects the specific amino acids that are needed to make the protein. There are 20 different tRNAs, one for each amino acid.
- The tRNA brings the amino acid to the ribosome
- The ribosome then builds a chain of amino acids (the protein) in the proper sequence, based on the code in the mRNA, called elongation.
- The ribosome continues to move down the mRNA strand until all the appropriate amino acids are added and the protein is complete.

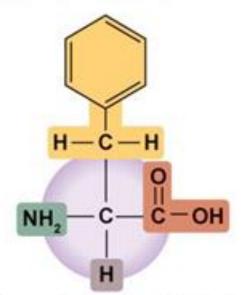
Phenylalanine (Phe)
Different amino acids, showing their unique side chains

What Are Proteins?

- Large molecules
- Made up of chains of amino acids
- Are found in every cell in the body
- Are involved in most of the body's functions and life processes
- > The sequence of amino acids is determined by DNA

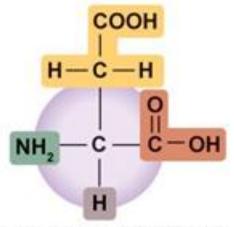

Structure of Proteins

- Made up of chains of amino acids; classified by number of amino acids in a chain
 - Peptides: fewer than 50 amino acids
 - Dipeptides: 2 amino acids
 - Tripeptides: 3 amino acids
 - Polypeptides: more than 10 amino acids
 - Proteins: more than 50 amino acids
 - Typically 100 to 10,000 amino acids linked together
- Chains are synthesizes based on specific bodily DNA
- Amino acids are composed of carbon, hydrogen, oxygen, and nitrogen

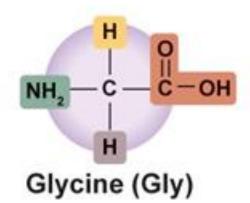

Structural Differences Between Carbohydrates, Lipids, and Proteins

Macronutrients	Chains of	Example
Carbohydrates	Glucose	Glucose units
Lipids	Fatty acids	Triglyceride Fatty acids
Proteins	Amino acids	Amino acids

The Anatomy of an Amino Acid

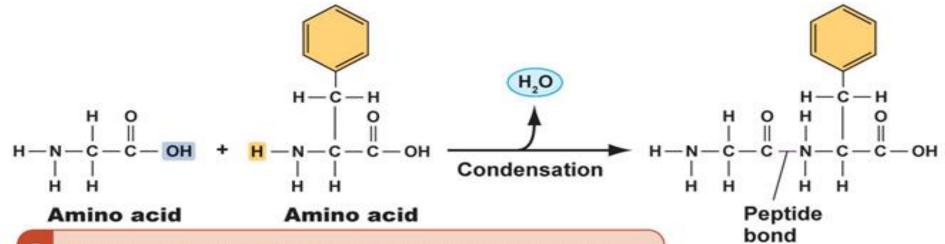


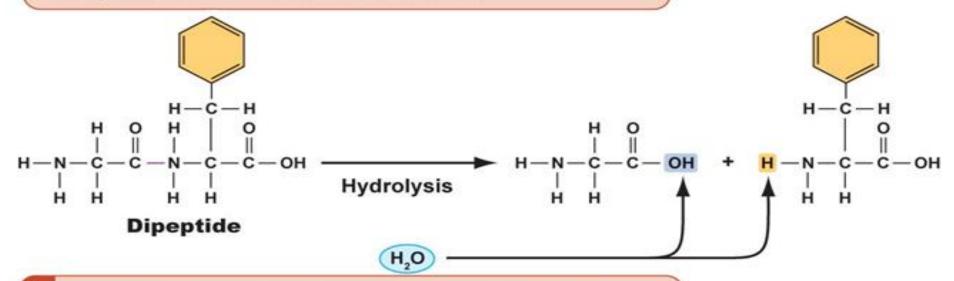
Amino acid structure



Phenylalanine (Phe)

Different amino acids, showing their unique side chains


Aspartic acid (Asp)


Peptide Bonds Link Amino Acids

- Form when the acid group (COOH) of one amino acid joins with the amine group (NH₂) of a second amino acid
- Formed through condensation
- Broken through hydrolysis

Condensation and Hydrolytic Reactions

A peptide bond forms by condensation when the acid group (COOH) and amine group of two different amino acids join and release a molecule of water.

When peptide bonds are broken by hydrolysis, the hydroxyl group (OH) and hydrogen (H) from water are added.

Essential, Nonessential, and Conditional

- > Essential must be consumed in the diet
- ➤ Nonessential can be synthesized in the body
- Conditionally essential cannot be synthesized due to illness or lack of necessary precursors
 - Premature infants lack sufficient enzymes needed to create arginine

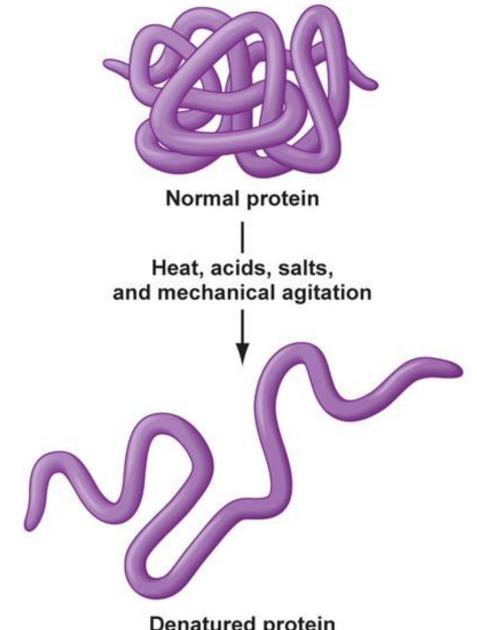
The Mighty Twenty

Essential Amino Acids	Nonessential Amino Acids
Histidine (His) ^a	Alanine (Ala)
Isoleucine (IIe)	Arginine (Arg) ^b
Leucine (Leu)	Asparagine (Asn)
Lysine (Lys)	Aspartic acid (Asp)
Methionine (Met)	Cysteine (Cys) ^b
Phenylalanine (Phe)	Glutamic acid (Glu)
Threonine (Thr)	Glutamine (Gln) ^b
Tryptophan (Trp)	Glycine (Gly) ^b
Valine (Val)	Proline (Pro) ^b
	Serine (Ser)
	Tyrosine (Tyr) ^b

^a Histidine was once thought to be essential only for infants. It is now known that small amounts are also needed for adults.

b These amino acids can be "conditionally essential" if there are either inadequate precursors or inadequate enzymes available to create these in the body.

Structure of the Protein


- Four levels of structure
 - Primary structure
 - Secondary structure
 - Tertiary structure
 - Quaternary structure

Any alteration in the structure or sequencing changes the shape and function of the protein

Denaturing

- Alteration of the protein's shape and thus functions through the use of
 - Heat
 - Acids
 - Bases
 - Salts
 - Mechanical agitation
- Primary structure is unchanged by denaturing

Denaturing a Protein

Denatured protein

Quick Review

- > Proteins are chains of combination of amino acids
- Amino acids contain carbon, hydrogen, oxygen, nitrogen, and sometimes sulfur
- Unique amino acids consist of a central carbon with a carboxyl group, a hydrogen, a nitrogen-containing amine group, and a unique side chain
- > There are 20 side chains and 20 unique amino acids
 - 9 essential amino acids
 - 11 nonessential amino acids
 - At time these become conditionally essential
- Amino acids link together with peptide bonds by condensation and break apart by hydrolysis

Quick Review

- Attractions and interactions between the side chains cause the proteins to fold into precise three-dimensional shapes
- Protein shape determines its function
- Proteins are denatured and their shapes changed by
 - Heat
 - Acids
 - Bases
 - Salts
 - Mechanical agitation